Respuesta :

Answer:

Given that,

The function is,

[tex]f(x)=1.2x^3-37x^2+265x+555[/tex]

To find: To find the slope of the secant line from x1=0 and x2=4

Explanation:

First we find the corresponding y values that is y1 and y2 for the given x1 and x2 respectively.

we get,

Whwn x1=0,

[tex]y1=f(x1)=f(0)[/tex]

[tex]f(0)=1.2(0)^3-37(0)^2+265(0)+555[/tex][tex]f(0)=555[/tex][tex]y1=555[/tex]

When x2=4, we get,

[tex]f(4)=1.2(4)^3-37(4)^2+265(4)+555[/tex][tex]f(4)=1099.8[/tex]

To find the slope of the line passing the points (0,555), (4,1099.8)

we know that,

Slope of the line passing through the points (x1,y1) and (x2,y2)

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

we get,

[tex]m=\frac{1099.8-555}{4-0}[/tex][tex]m=\frac{544.8}{4}[/tex][tex]m=136.2[/tex]

Answer is:

Slope of the secant line from x1=0 and x2=4 is 136.2.