For this sequence d, the common difference = 4-2 or 6-4 = 2
a, the first term(T1) = 2
n = 12
[tex]\begin{gathered} T_{n\text{ }}=\text{ a + (n-1)d} \\ \text{This is the n}_{th}\text{ of the sequence, since it is an arithmetic progression} \end{gathered}[/tex][tex]\begin{gathered} T_{12}=\text{ 2 + ( 12 - 1)2} \\ T_{12}=\text{ 2+ 11(2)} \\ T_{12}=\text{ 24} \end{gathered}[/tex]