Respuesta :
Answer:
[tex]t=\frac{(\bar X_1 -\bar X_2)-(\mu_{1}-\mu_2)}{S_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}[/tex]
Where t follows a t distribution with [tex]n_1+n_2 -2[/tex] degrees of freedom and the pooled variance [tex]S^2_p[/tex] is given by this formula:
[tex]\S^2_p =\frac{(n_1-1)S^2_1 +(n_2 -1)S^2_2}{n_1 +n_2 -2}[/tex]
[tex]t=\frac{19 -22)-(0)}{4.095\sqrt{\frac{1}{8}+\frac{1}{7}}}=-1.416[/tex]
Step-by-step explanation:
Data given
American: 21,17,17,20,25,16,20,16 (Sample 1)
French: 24,18,20,28,18,29,17 (Sample 2)
When we have two independent samples from two normal distributions with equal variances we are assuming that
[tex]\sigma^2_1 =\sigma^2_2 =\sigma^2[/tex]
And the statistic is given by this formula:
[tex]t=\frac{(\bar X_1 -\bar X_2)-(\mu_{1}-\mu_2)}{S_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}[/tex]
Where t follows a t distribution with [tex]n_1+n_2 -2[/tex] degrees of freedom and the pooled variance [tex]S^2_p[/tex] is given by this formula:
[tex]S^2_p =\frac{(n_1-1)S^2_1 +(n_2 -1)S^2_2}{n_1 +n_2 -2}[/tex]
This last one is an unbiased estimator of the common variance [tex]\sigma^2[/tex]
The system of hypothesis on this case are:
Null hypothesis: [tex]\mu_1 = \mu_2[/tex]
Alternative hypothesis: [tex]\mu_1 \neq \mu_2[/tex]
Or equivalently:
Null hypothesis: [tex]\mu_1 - \mu_2 = 0[/tex]
Alternative hypothesis: [tex]\mu_1 -\mu_2 \neq 0[/tex]
Our notation on this case :
[tex]n_1 =8[/tex] represent the sample size for group 1
[tex]n_2 =7[/tex] represent the sample size for group 2
[tex]\bar X_1 =19[/tex] represent the sample mean for the group 1
[tex]\bar X_2 =22[/tex] represent the sample mean for the group 2
[tex]s_1=3.117[/tex] represent the sample standard deviation for group 1
[tex]s_2=5.0[/tex] represent the sample standard deviation for group 2
First we can begin finding the pooled variance:
[tex]S^2_p =\frac{(8-1)(3.117)^2 +(7 -1)(5.0)^2}{8 +7 -2}=16.770[/tex]
And the deviation would be just the square root of the variance:
[tex]S_p=4.095[/tex]
And now we can calculate the statistic:
[tex]t=\frac{19 -22)-(0)}{4.095\sqrt{\frac{1}{8}+\frac{1}{7}}}=-1.416[/tex]
Now we can calculate the degrees of freedom given by:
[tex]df=8+7-2=13[/tex]
And now we can calculate the p value using the altenative hypothesis:
[tex]p_v =2*P(t_{13}<-1.416) =0.1803[/tex]
So with the p value obtained and using the significance level assumed [tex]\alpha=0.1[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 10% of significance we don't have significant differences between the two means.