Respuesta :
The general form of an exponential function is expressed as
[tex]\begin{gathered} y=ab^x\text{ ----- equation 1} \\ \text{where} \\ a\text{ is the y-intercept of the function} \\ b\text{ is the common ration of the function} \end{gathered}[/tex]In the function
[tex]h(x)\text{ = }-2(\frac{1}{3})^x\text{ ------ equation 2}[/tex]A) a-term:
In, the h(x) function, the a-term is -2.
B) the y-intercept:
The y-intercept of the function is obtained as the value of h(x), when x equals zero.
thus,
[tex]\begin{gathered} \text{when x = 0,} \\ h(x)\text{ = -2(}\frac{1}{3})^0\text{ = -2}\times1 \\ \Rightarrow h(x)\text{ = }-2 \end{gathered}[/tex]thus, the y-intercept is -2.
C) the common ratio
In equation 1, b is the common ratio of the exponential function. In comparison with equation 2, we have
[tex]b\text{ = }\frac{1}{3}[/tex]Thus, the common ratio of the function is
[tex]\frac{1}{3}[/tex]D) the x-intercept:
The x-intercept of the function is obtained as the value of x when h(x) equals zero.
thus,
[tex]\begin{gathered} \text{when h(x) = 0} \\ 0\text{ = -2(}\frac{1}{3})^x \\ \Rightarrow0=-2(3^{-1})^x \\ 0=3^{-x} \\ take\text{ the log of both sides,} \\ \log \text{ 0 = log}3^{-x} \\ \infty\text{ = -xlog3} \\ \Rightarrow x=\text{ }\frac{\infty}{-\log 3} \\ x\text{ = }\infty \\ \end{gathered}[/tex]thus, the x-intercept is at ∞ (infinity).
E) the end behaviour:
The end behavoiur of the function is the behaviour of the h(x) function as x approaches plus infinity or negative infinity.
Thus,
[tex]\begin{gathered} \lim _{x\to-\infty}y\text{ = }\lim _{x\to-\infty}(-2(\frac{1}{3})^x)\text{ } \\ =-2\cdot\lim _{x\to\: -\infty\: }\mleft(\mleft(\frac{1}{3}\mright)^x\mright) \\ =-2\cdot\infty \\ \Rightarrow-\infty \end{gathered}[/tex][tex]\begin{gathered} \lim _{x\to\infty}y\text{ = }\lim _{x\to\infty}(-2(\frac{1}{3})^x)\text{ } \\ =-2\cdot\lim _{x\to\infty\: }\mleft(\mleft(\frac{1}{3}\mright)^x\mright) \\ =-2\cdot\: 0 \\ \Rightarrow0 \\ \end{gathered}[/tex]thus, as x tends to negative infinity, h(x) tends to negative infinity. when x tends to positive infinity, h(x) tends to zero.
Sketch of the h(x) graph on a coordinate plane:
The sketch of the h(x) function is as shown below: