we are given
skew lines as
L1: x = 2 + t, y = 2 + 6t, z = 2t
L2: x = 2 + 2s, y = 4 + 14s, z = −1 + 5s
Firstly, we will find directional vector
[tex]u=(1,6,2)[/tex]
[tex]v=(2,14,5)[/tex]
now, we will find cross product
[tex]n=uXv[/tex]
[tex]n=(1,6,2)X(2,14,5)[/tex]
[tex]n=(2,-1,2) [/tex]
we are given two points as
P: (2,2,0) and Q:(2,4,-1)
The dot product of orthogonal vectors is zero
[tex]n*PR=0[/tex]
[tex](2,-1,2)*((x-2) , (y-2) , (z-0))=0[/tex]
[tex]2(x-2)-1(y-2)+2(z-0)=0[/tex]
[tex]2x-4-y+2+2z=0[/tex]
[tex]2x-y+2z-2=0[/tex]
now, we can find distance from point Q
[tex]d=\frac{|2*2-4+2*-1-2|}{\sqrt{2^2+(-1)^2+(2)^2} }[/tex]
[tex]d=\frac{4}{3}[/tex]..........Answer