Given:
The given expression is
[tex]\sqrt{2(a+b)}=\sqrt{a+c}+\sqrt{a-c}[/tex]Required:
We want to find the type of triangle
Explanation:
First take square both side
[tex]\begin{gathered} \sqrt{2(a+b)}=\sqrt{a+c}+\sqrt{a-c} \\ 2a+2b=a+c+2\sqrt{a^2-c^2}+a-c \\ 2b=2\sqrt{a^2-c^2} \\ b=\sqrt{a^2-c^2} \end{gathered}[/tex]now again take square for both side
[tex]\begin{gathered} b^2=a^2-c^2 \\ a^2=b^2+c^2 \end{gathered}[/tex]Final answer:
Right angle triangle