SOLUTION
The equation of the line is given as
[tex]\begin{gathered} \frac{3}{5}x\text{ + }\frac{1}{3}y\text{ = }\frac{1}{15} \\ To\text{ find the x intercept, we put y = 0 } \end{gathered}[/tex][tex]\begin{gathered} \frac{3}{5}x\text{ + }\frac{1}{3}(0)\text{ = }\frac{1}{15} \\ \\ \frac{3x}{5}\text{ + 0 = }\frac{1}{15} \\ \\ \frac{3x}{5}\text{ = }\frac{1}{15} \\ 3x\text{ }\times15\text{ = 5 x 1} \\ \\ \frac{3x\text{ }\times15}{3\times15}\text{ = }\frac{5}{3\text{ }\times15} \\ \\ x\text{ = }\frac{1}{9} \\ \text{x intercept of the line is ( }\frac{1}{9},\text{ 0)} \end{gathered}[/tex]To find the y intercept, we put x = 0
[tex]\begin{gathered} \text{From }\frac{3}{5}x\text{ + }\frac{1}{3}y\text{ = }\frac{1}{15} \\ \\ \frac{3}{5}(0)\text{ + }\frac{1}{3}y\text{ = }\frac{1}{15} \\ \\ 0\text{ + }\frac{y}{3}\text{ = }\frac{1}{15} \\ \\ \frac{y}{3}\text{ = }\frac{1}{15} \\ 15y\text{ = 3} \\ \\ y=\text{ }\frac{3}{15}\text{ = }\frac{1}{5} \\ \\ y\text{ intercept of the line is (0, }\frac{1}{5}) \end{gathered}[/tex]