On the left I make the integral with respect to P and on the right the integral with respect to t
[tex]-(\ln (10-P))=t+c[/tex][tex]\begin{gathered} \ln (10-P)=-t+c \\ \end{gathered}[/tex]we use e to simplify Steps to constant
[tex]\begin{gathered} e^{\ln (10-P)}=e^{(-t+c)} \\ 10-P=e^{-t+c} \\ 10-P=e^{-t}\times e^c \\ 10-P=e^{-t}\times c \\ 10-P=ce^{-t} \end{gathered}[/tex]now, solve P
[tex]P=-ce^{-t}+10[/tex]to find c we use P(0)=4, so when we replcae t=0 the soltuion must be 4
[tex]\begin{gathered} 4=-ce^{-0}+10 \\ 4=-c+10 \\ c=10-4 \\ c=6 \end{gathered}[/tex]the complete function is
[tex]P=-6e^{-t}+10[/tex]or
[tex]P=10-6e^{-t}[/tex]so, the right option is C