Respuesta :

[tex]\begin{gathered} \frac{dP}{dt}+P^{\prime}=10 \\ \\ \frac{1}{10-P}\times P^{\prime}=1 \end{gathered}[/tex]

On the left I make the integral with respect to P and on the right the integral with respect to t

[tex]-(\ln (10-P))=t+c[/tex][tex]\begin{gathered} \ln (10-P)=-t+c \\ \end{gathered}[/tex]

we use e to simplify Steps to constant

[tex]\begin{gathered} e^{\ln (10-P)}=e^{(-t+c)} \\ 10-P=e^{-t+c} \\ 10-P=e^{-t}\times e^c \\ 10-P=e^{-t}\times c \\ 10-P=ce^{-t} \end{gathered}[/tex]

now, solve P

[tex]P=-ce^{-t}+10[/tex]

to find c we use P(0)=4, so when we replcae t=0 the soltuion must be 4

[tex]\begin{gathered} 4=-ce^{-0}+10 \\ 4=-c+10 \\ c=10-4 \\ c=6 \end{gathered}[/tex]

the complete function is

[tex]P=-6e^{-t}+10[/tex]

or

[tex]P=10-6e^{-t}[/tex]

so, the right option is C

RELAXING NOICE
Relax