Let us write out the given data,
[tex]\begin{gathered} \mu=\operatorname{mean}=3350 \\ \sigma=standard\text{ deviation=122} \\ x=3500 \\ z=z-\text{score} \end{gathered}[/tex]Let us now write the formula for Z-score,
[tex]z=\frac{x-\mu}{\sigma}[/tex]Let us solve for z-score,
[tex]\begin{gathered} z=\frac{3500-3350}{122} \\ =\frac{150}{122}=1.2295 \\ z=1.2295 \end{gathered}[/tex]The probablity that the percent of adult who eat more than 3500 will be
[tex]\begin{gathered} Pr(z>1.23)\Rightarrow Pr(0Hence,the percent of adults who eat more than 3500 calories per day is 11%