Respuesta :
to find the invers of y=something
1. switch x and y
2. solve for y
3. replace y with f⁻¹(x)
so
y=7x²-3
switch x and y
x=7y²-3
solve for y
add 3
x+3=7y²
[tex] \frac{x+3}{7} =y^2[/tex]
[tex] \sqrt{\frac{x+3}{7}} =y[/tex]
[tex]f^{-1}(x)= \sqrt{\frac{x+3}{7}}[/tex]
rationalizing denomenator
[tex]f^{-1}(x)= \frac{\sqrt{7(x+3)}}{7}[/tex]
1. switch x and y
2. solve for y
3. replace y with f⁻¹(x)
so
y=7x²-3
switch x and y
x=7y²-3
solve for y
add 3
x+3=7y²
[tex] \frac{x+3}{7} =y^2[/tex]
[tex] \sqrt{\frac{x+3}{7}} =y[/tex]
[tex]f^{-1}(x)= \sqrt{\frac{x+3}{7}}[/tex]
rationalizing denomenator
[tex]f^{-1}(x)= \frac{\sqrt{7(x+3)}}{7}[/tex]
The inverse of the function is
[tex] y = \sqrt{ \frac{x + 3}{7} } [/tex]
Given the equation, y = 7x²-3
First, we need to swap the given variables
x = 7y² - 3
Add 3 to both sides
x+3 = 7y²-3+3
x+3 = 7y²
Divide both sides by 7
(x+3)/7 = 7y²/7
(x+3)/7 = y²
Take the square root of both sides
[tex] y = \sqrt{ \frac{x + 3}{7} } [/tex]
Hence the inverse of the function is
[tex]y = \sqrt{ \frac{x + 3}{7} } [/tex]
Learn more here: brainly.com/question/231445