Answer:
1.74 x 10⁵ m³
Explanation:
The power is equal to:
[tex]P=\frac{E}{t}\rightarrow E=Pt[/tex]Where P is the power, E is the energy and t is the time. So, we can calculate the energy replacing
P = 180 MW = 180 x 10⁶ W
t = 1 hour = 3600 s
So, the energy is
[tex]\begin{gathered} E=(180\times10^6\text{ W\rparen\lparen3600 s\rparen} \\ E=6.48\times10^{11}\text{ J} \end{gathered}[/tex]On the other hand, the energy stored will be potential, so
[tex]E=mgh[/tex]Where m is the mass, g is the gravity and h is the height. Solving for m and replacing E = 6.48 x 10^11 J, g = 9.8 m/s², and h = 380 m, we get:
[tex]\begin{gathered} m=\frac{E}{gh} \\ \\ m=\frac{6.48\times10^{11}\text{ J}}{9.8\text{ m/s}^2\text{ \lparen380 m\rparen}} \\ \\ m=1.74\times10^8\text{ kg} \end{gathered}[/tex]Finally, we can calculate the volume of the water in cubic meters using the given ratio that Water has a mass of 1.00 x 10^3 kg for every 1.0m^3, so
[tex]1.74\times10^8\text{ kg }\times\frac{1\text{ m}^3}{1\times10^3\text{ kg}}=1.74\times10^5\text{ m}^3[/tex]Therefore, the answer is 1.74 x 10⁵ m³