Respuesta :

The given structutre can be divided to 3 parts.

Let the first part be the rectangle ABHI.

The area of the section-1 is,

[tex]\begin{gathered} Arae(ABHI)=9\text{ yd}\times11\text{ yd} \\ =99 \end{gathered}[/tex]

The second part is also a rectangle. The area of the rectangle BCFG is,

[tex]\begin{gathered} \text{Area(BCFG)}=(9+4)\times9 \\ =13\times9 \\ =117 \end{gathered}[/tex]

The third section is a triangle. The area of the triangle CED is,

[tex]\begin{gathered} \text{Area(CED)}=\frac{1}{2}\times9\times4 \\ =18 \end{gathered}[/tex]

The total area of the given structure is,

[tex]\begin{gathered} A=\text{Area (ABHI)+ Area(B}CFG\text{)}+\text{ Area(}CDE\text{)} \\ =99+117+18 \\ =234\text{ square yards} \end{gathered}[/tex]

Thus, the total area of the given structure is 234 square yards, and the correct option is option D.

Ver imagen LyllianV572302
RELAXING NOICE
Relax