We will use congruency to solve this question
In the 2 triangles ABE and CBD
[tex]\begin{gathered} AB=BC \\ BE=BD \\ \angle B=\angle B \end{gathered}[/tex]Then two triangles are congruent by the SSS postulate of congruency
From the result of congruency
[tex]\angle A=\angle C[/tex]From given
[tex]\begin{gathered} AB=BC \\ DB=EB \\ AB=BD+DA \\ BC=BE+EC \\ BD+DA=BE+EC \\ DA=EC \end{gathered}[/tex]In the 2 triangles OCE and OAD
[tex]\begin{gathered} \angle C=\angle A\rightarrow\text{proved} \\ EC=DA \\ \angle COE=AOD\rightarrow V.O.A \end{gathered}[/tex]Then the 2 triangles are congruent by the AAS postulate
Then as the result of congruency
[tex]\begin{gathered} OC=OA \\ OE=OD \end{gathered}[/tex]