Use the sum and difference identities to rewrite the following expression as a trigonometric function of a single number.2лम2л五COS(15) w() - Sin(ਤੋਂ ) sin()-(COS

The sum identity for Cosine is given as:
[tex]\cos (A+B)=\cos A\cos B-\sin A\sin B[/tex]This is the same for the given equation in the equation, assuming:
[tex]\begin{gathered} A=\frac{2\pi}{5} \\ B=\frac{\pi}{12} \end{gathered}[/tex]Hence, the correct answer is:
[tex]\cos (A+B)=\cos A\cos B-\sin A\sin B[/tex]