Explanation
2 lines are perpendicular if the product ot their slopes equals 1
then,
Step 1
find the slope of the given line
[tex]\begin{gathered} y=-3x+5\Rightarrow y=mx+b \\ m\text{ is the slope} \end{gathered}[/tex]so
[tex]Slope_1_{}=-3[/tex]Step 2
Now, let slope2 represents the slope of the line we are looking for ( perpendicular)
[tex]\begin{gathered} \text{slope}_1\cdot slope_2=-1 \\ \text{replacing} \\ -3\cdot Slope_2=-1_{} \\ \text{divide both sides by -3} \\ \frac{-3\cdot Slope_2}{-3}=\frac{-1}{-3} \\ \text{Slope}_2=\frac{1}{3} \end{gathered}[/tex]now, check in the answer options the function that has 1/3 as the factor of x
[tex]\begin{gathered} y=mx+b \\ m=\frac{1}{3} \end{gathered}[/tex]then, the answer is
[tex]d\text{. }\frac{1}{3}x-y=3[/tex]