Respuesta :

check the picture below.


notice, by drawing the altitude from C, we end up with a 30-60-90 and a 45-45-90 triangle, thus we use the 30-60-90 and 45-45-90 rules as you see there.


[tex] \bf \textit{area of a triangle}\\\\
A=\cfrac{1}{2}bh~~
\begin{cases}
b=\stackrel{w}{6\sqrt{3}}+\stackrel{y}{6}\\
h=6
\end{cases}\implies A=\cfrac{1}{2}(6\sqrt{3}+6)(6)
\\\\\\
A=18\sqrt{3}+18\implies A=18(1+\sqrt{3}) [/tex]

Ver imagen jdoe0001
gmany

Look at the picture.

In a 30-60-90 (45-45-90) triangle, you can find the measure of any of the three sides (picture 2).

[tex]CD=\dfrac{1}{2}AC\to CD=\dfrac{1}{2}\cdot12=6[/tex]

[tex]AD=CD\sqrt3\to AD=6\sqrt3[/tex]

[tex]DB=CD\to DB=6[/tex]

[tex]AB=AD+DB\to AB=6\sqrt3+6[/tex]

The formula of the area of a triangle ABC:

[tex]A_\triangle=\dfrac{1}{2}(AB)(CD)[/tex]

substitute:

[tex]A_\triangle=\dfrac{1}{2}\cdot(6\sqrt3+6)(6)=3(6\sqrt3+6)=18+18\sqrt3=18(1+\sqrt3)[/tex]

Answer: [tex]\boxed{C.\ 18(1+\sqrt3)}[/tex]

Ver imagen gmany
Ver imagen gmany
ACCESS MORE