Respuesta :
The line integral is given by
[tex]\displaystyle\int_C\mathbf f\cdot\mathrm d\mathbf r=\int_C((13x^2y+3y^3-y)\,\mathrm dx-12x^3\,\mathrm dy)[/tex]
By Green's theorem, the line integral along [tex]C[/tex] is equivalent to the double integral over [tex]R[/tex] (the region bounded by [tex]C[/tex])
[tex]\displaystyle\iint_R\left(\frac{\partial(-12x^3)}{\partial x}-\frac{\partial(13x^2y+3y^3-y)}{\partial y}\right)\,\mathrm dx\,\mathrm dy[/tex]
[tex]=\displaystyle\iint_R(-36x^2-(13x^2+9y^2-1))\,\mathrm dx\,\mathrm dy[/tex]
[tex]=\displaystyle\iint_R(1-49x^2-9y^2)\,\mathrm dx\,\mathrm dy[/tex]
Now consider the function [tex]g(x,y)=1-49x^2-9y^2[/tex]. We can think of the double integral above as a volume integral; namely, it's the volume of the region below [tex]g(x,y)[/tex] and above the region [tex]R[/tex] in the [tex]x[/tex]-[tex]y[/tex] plane (i.e. [tex]z=0[/tex]). This volume will be maximized if [tex]C[/tex] is taken to be the intersection of [tex]g(x,y)[/tex] with the plane, which means [tex]C[/tex] is the ellipse [tex]49x^2+9y^2=1[/tex].
For the double integral, we can convert to an augmented system of polar coordinates using
[tex]\begin{cases}x=\frac17r\cos\theta\\\\y=\frac13r\sin\theta\end{cases}[/tex]
where [tex]0\le r\le1[/tex] and [tex]0\le\theta\le2\pi[/tex]. We have the Jacobian determinant
[tex]\det\mathbf J=\left|\dfrac{\partial(x,y)}{\partial(r,\theta)}\right|=\begin{vmatrix}\frac{\partial x}{\partial r}&\frac{\partial x}{\partial\theta}\\\\\frac{\partial y}{\partial r}&\frac{\partial y}{\partial\theta}\end{vmatrix}[/tex]
[tex]\det\mathbf J=\begin{vmatrix}\frac17\cos\theta&-\frac17r\sin\theta\\\\\frac13\sin\theta&\frac3r\cos\theta\end{vmatrix}=\dfrac r{21}[/tex]
So the double integral, upon converting to our polar coordinates, is equivalent to
[tex]=\displaystyle\frac1{21}\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}\left(1-49\left(\frac r7\cos\theta)^2-9\left(\frac r3\sin\theta\right)^2\right)r\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\frac1{21}\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}(1-r^2\cos^2\theta-r^2\sin^2\theta)r\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\frac1{21}\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}(r-r^3)\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\frac{2\pi}{21}\int_{r=0}^{r=1}(r-r^3)\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\dfrac\pi{42}[/tex]
[tex]\displaystyle\int_C\mathbf f\cdot\mathrm d\mathbf r=\int_C((13x^2y+3y^3-y)\,\mathrm dx-12x^3\,\mathrm dy)[/tex]
By Green's theorem, the line integral along [tex]C[/tex] is equivalent to the double integral over [tex]R[/tex] (the region bounded by [tex]C[/tex])
[tex]\displaystyle\iint_R\left(\frac{\partial(-12x^3)}{\partial x}-\frac{\partial(13x^2y+3y^3-y)}{\partial y}\right)\,\mathrm dx\,\mathrm dy[/tex]
[tex]=\displaystyle\iint_R(-36x^2-(13x^2+9y^2-1))\,\mathrm dx\,\mathrm dy[/tex]
[tex]=\displaystyle\iint_R(1-49x^2-9y^2)\,\mathrm dx\,\mathrm dy[/tex]
Now consider the function [tex]g(x,y)=1-49x^2-9y^2[/tex]. We can think of the double integral above as a volume integral; namely, it's the volume of the region below [tex]g(x,y)[/tex] and above the region [tex]R[/tex] in the [tex]x[/tex]-[tex]y[/tex] plane (i.e. [tex]z=0[/tex]). This volume will be maximized if [tex]C[/tex] is taken to be the intersection of [tex]g(x,y)[/tex] with the plane, which means [tex]C[/tex] is the ellipse [tex]49x^2+9y^2=1[/tex].
For the double integral, we can convert to an augmented system of polar coordinates using
[tex]\begin{cases}x=\frac17r\cos\theta\\\\y=\frac13r\sin\theta\end{cases}[/tex]
where [tex]0\le r\le1[/tex] and [tex]0\le\theta\le2\pi[/tex]. We have the Jacobian determinant
[tex]\det\mathbf J=\left|\dfrac{\partial(x,y)}{\partial(r,\theta)}\right|=\begin{vmatrix}\frac{\partial x}{\partial r}&\frac{\partial x}{\partial\theta}\\\\\frac{\partial y}{\partial r}&\frac{\partial y}{\partial\theta}\end{vmatrix}[/tex]
[tex]\det\mathbf J=\begin{vmatrix}\frac17\cos\theta&-\frac17r\sin\theta\\\\\frac13\sin\theta&\frac3r\cos\theta\end{vmatrix}=\dfrac r{21}[/tex]
So the double integral, upon converting to our polar coordinates, is equivalent to
[tex]=\displaystyle\frac1{21}\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}\left(1-49\left(\frac r7\cos\theta)^2-9\left(\frac r3\sin\theta\right)^2\right)r\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\frac1{21}\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}(1-r^2\cos^2\theta-r^2\sin^2\theta)r\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\frac1{21}\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}(r-r^3)\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\frac{2\pi}{21}\int_{r=0}^{r=1}(r-r^3)\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\dfrac\pi{42}[/tex]