Respuesta :

The position function of a particle is given by:

[tex]X\mleft(t\mright)=\frac{2}{3}t^3-\frac{9}{2}t^2-18t[/tex]

The velocity function is the derivative of the position:

[tex]\begin{gathered} V(t)=\frac{2}{3}(3t^2)-\frac{9}{2}(2t)-18 \\ \text{Simplifying:} \\ V(t)=2t^2-9t-18 \end{gathered}[/tex]

The particle will be at rest when the velocity is 0, thus we solve the equation:

[tex]2t^2-9t-18=0[/tex]

The coefficients of this equation are: a = 2, b = -9, c = -18

Solve by using the formula:

[tex]t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Substituting:

[tex]\begin{gathered} t=\frac{9\pm\sqrt[]{81-4(2)(-18)}}{2(2)} \\ t=\frac{9\pm\sqrt[]{81+144}}{4} \\ t=\frac{9\pm\sqrt[]{225}}{4} \\ t=\frac{9\pm15}{4} \end{gathered}[/tex]

We have two possible answers:

[tex]\begin{gathered} t=\frac{9+15}{4}=6 \\ t=\frac{9-15}{4}=-\frac{3}{2} \end{gathered}[/tex]

We only accept the positive answer because the time cannot be negative.

Now calculate the position for t = 6:

[tex]undefined[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico