Find the ratio of the areas of the two circles

Explanation
the area of a circle is given by:
[tex]\begin{gathered} \text{Area}=\text{ }\pi r^2 \\ or \\ \text{Area}=\text{ }\pi(\frac{D^2}{4}) \end{gathered}[/tex]then
Step 1
find the area of the circles
a)let radius= r=10 m
replace
[tex]\begin{gathered} \text{Area}=\text{ }\pi r^2 \\ \text{Area}=\pi(10m)^2 \\ \text{Area}=100\pi(m^2) \end{gathered}[/tex]b) let
diameter= 24 m
replace
[tex]\begin{gathered} \text{Area}=\text{ }\pi(\frac{D^2}{4}) \\ \text{Area}=\text{ }\pi(\frac{(24)^2^{}}{4}) \\ \text{Area}=\text{ }\pi(\frac{(24)^2^{}}{4}) \\ Area_2=144\text{ }\pi \end{gathered}[/tex]Step 2
now, find the ratio of the areas
so
[tex]\begin{gathered} \text{ratio}=\text{ }\frac{Area_1}{Area_2_{}} \\ \text{replace} \\ \text{ratio}=\frac{100\pi}{144\pi} \\ \text{ratio}=\frac{50}{72}=\frac{25}{36} \\ \text{ratio}=\frac{25}{36} \end{gathered}[/tex]I hope this helps you