Respuesta :
Answer:
a) Yes, No, No No
b) V={(-2,6),(0,4),(0,8),(2,6)}.
c) Domain={-2,0,2}
d) Co-domain={4,6,8}
Step-by-step explanation:
If A and B are two sets then the cartesian product of A and B denoted by [tex]A\times B[/tex] is the set of all ordered pairs (a,b), where [tex]a\in A[/tex] and [tex]b\in B[/tex]
[tex]A\times B[/tex]={[tex](a,b)|a\in A \:\wedge b\in B[/tex]}
The given relation is
[tex]V:G\to H[/tex] for every (x, y) is in G ✕ H, (x, y) is in V means that [tex]\frac{x-y}{4}[/tex] is an integer
a) [tex]2V6=(2,6)=\frac{2-6}{4} =-1[/tex] Yes, since -1 is an integer
b) [tex]-2V8=(-2,8)=\frac{-2-8}{4} =-2.5[/tex] No, since -2.5 is not an integer
c) [tex]0V6=(0,6)=\frac{0-6}{4} =-1.5[/tex] No, since -1.5 is not an integer
[tex]2V4=(2,4)=\frac{2-4}{4} =-0.5[/tex] No, since -0.5 is not an integer
G ✕ H={(-2,4),(-2,6),(-2,8),(0,4),(0,6),(0,8),(2,4),(2,6),(2,8)}
From this set, we have some ordered pairs that satisfy the definition of V.
V={(-2,6),(0,4),(0,8),(2,6)}.....The difference of these ordered pairs are multiples of 4.
c) The domain of V is the set of the first coordinates of the ordered pairs of V
Domain={-2,0,2}
The co domain of v is the set of all the second coordinates of the ordered pairs of V
Co-domain={4,6,8}