Respuesta :

[tex]\begin{gathered} c=\frac{a}{a^2+b^2} \\ d=\frac{-b}{a^2+b^2} \end{gathered}[/tex]

Explanation

[tex]\frac{1}{a+bi}=c+di[/tex]

Step 1

multiplicate by the conjugate

[tex]\begin{gathered} \frac{1}{a+bi}\cdot\frac{a-bi}{a+bi}=\frac{a-bi}{(a+bi)(a-bi)}=\frac{a-bi}{a^2-(bi)^2} \\ \frac{1}{a+bi}\cdot\frac{a-bi}{a+bi}=\frac{a-bi}{(a+bi)(a-bi)}=\frac{a-bi}{a^2-(-b^2)}=\frac{a-bi}{a^2+b^2} \end{gathered}[/tex]

notice that

[tex]\begin{gathered} \frac{1}{a+bi}=\frac{a-bi}{a^2+b^2}=\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i \\ \frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i=c+di \\ so \\ \end{gathered}[/tex][tex]\begin{gathered} c=\frac{a}{a^2+b^2} \\ d=\frac{-b}{a^2+b^2} \end{gathered}[/tex]

I hope this helsp you

RELAXING NOICE
Relax