Given:
A town’s population increases at a constant rate.
In 2010: population = 54,000
In 2012: population = 79,000
The will use the function of the exponential growth:
[tex]P(t)=P_0\cdot(1+r)^t[/tex]where: P₀ is the initial population
r is the rate of increase
t is the number of years from 2010
So, we'll substitute with the given values to find the rate of increase
[tex]\begin{gathered} P_0=54000 \\ P=79000 \\ t=2012-2010=2 \\ \\ 79000=54000\cdot(1+r)^2 \end{gathered}[/tex]Solve the last equation to find (r) as follows:
[tex]\begin{gathered} \frac{79000}{54000}=(1+r)^2 \\ \\ (1+r)^2=\frac{79}{54} \\ \\ 1+r=\sqrt[]{\frac{79}{54}} \\ \\ r=\sqrt[]{\frac{79}{54}}-1\approx0.2095 \end{gathered}[/tex]We will use the value of (r) to find the population in 2016
So, t = 2016 - 2010 = 6
[tex]P(6)=54000\cdot(1+0.2095)^6\approx169,081[/tex]So, the answer will be:
The population will be 169,081 in 2016.