The vector A= 90m/s towards north and vector B = 125 m/s towards west. Find the magnitude of the resultant vector using pythagorean theorem

154.03 m/s
Explanation
The Pythagorean theorem states that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right angle)
[tex]a^2+b^2=c^2[/tex]so, to add the vectors we solve use tht P.T and solve for c
s
Step 1
a) let
[tex]\begin{gathered} a=\text{ Vector A=90 }\frac{m}{s} \\ b=\text{ Vector B=125 }\frac{m}{s} \\ c=\text{ unknown= maginutude of the resultant} \end{gathered}[/tex]b) now, replace in the formula:
[tex]\begin{gathered} a^2+b^2=c^2 \\ 90^2+125^2=c^2 \\ 8100+15625=c^2 \\ 23725=c^2 \\ square\text{ root in both sides} \\ \sqrt{23,725}=\sqrt{c^2} \\ 154.03=c \end{gathered}[/tex]therefore, the answer is
154.03 m/s
I hope this helps you