Let's begin by identifying key information given to us:
[tex]\begin{gathered} W=4.8in, \\ X=7.2in, \\ Y=9.3in \\ \end{gathered}[/tex]Let's draw a diagram of the question
We have 3 known sides & 1 unknown angle. We will use Law of cosines
[tex]\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ 2bc\cos A=b^2+c^2-a^2 \\ \cos A=\frac{b^2+c^2-a^2}{2bc} \\ A=\cos ^{-1}(\frac{b^2+c^2-a^2}{2bc}) \\ a=w,b=x,c=y \\ W=\cos ^{-1}(\frac{7.2^2+9.3^2-4.8^2}{2(7.2)(9.3)}) \\ W=\cos ^{-1}(\frac{115.29}{133.92}) \\ W=\cos ^{-1}(0.8609) \\ W=30.58\approx31 \\ W=31^{\circ} \end{gathered}[/tex]