Write an equation of the line passing through the points (3,-6) with the slope of -2/3

Explanation:
The coordinate is given below as
[tex]\begin{gathered} (x_1,y_1)=(3,-6) \\ slope=m=-\frac{2}{3} \end{gathered}[/tex]Concept:
To calculate the equation of a line given slope and one point, we will use the formula below
[tex]m=\frac{y-y_1}{x-x_1}[/tex]By substituting the values, we will have
[tex]\begin{gathered} m=\frac{y-y_{1}}{x-x_{1}} \\ -\frac{2}{3}=\frac{y-(-6)}{x-3} \\ -\frac{2}{3}=\frac{y+6}{x-3} \\ cross\text{ multpily, we will have} \\ 3(y+6)=-2(x-3) \\ 3y+18=-2x+6 \\ 3y=-2x+6-18 \\ 3y=-2x-12 \\ divide\text{ through by 3} \\ \frac{3y}{3}=-\frac{2x}{3}-\frac{12}{3} \\ y=-\frac{2}{3}x-4 \end{gathered}[/tex]Hence,
The final answer is
[tex]y=-\frac{2}{3}x-4[/tex]