Respuesta :

Recall that the unit vector in the direction of a vector v≠<0,0> is:

[tex]\vec{u}=\frac{v}{||v||}.[/tex]

Notice that:

[tex]||<-2,9>||=\sqrt{(-2)^2+9^2}.[/tex]

Simplifying the above result we get:

[tex]||<-2,9>||=\sqrt{4+81}=\sqrt{85}.[/tex]

Therefore the unite vector in the direction of <-2,9> is:

[tex]\frac{<-2,9>}{\sqrt{85}}=<-\frac{2}{\sqrt{85}},\frac{9}{\sqrt{85}}>.[/tex]

Answer:

[tex]\begin{equation*} <-\frac{2}{\sqrt{85}},\frac{9}{\sqrt{85}}> \end{equation*}[/tex]

ACCESS MORE
EDU ACCESS