a) Parameter, population standard deviation σ = 13.0
__
Sample statistics n=36 x = 58.5
b)The margin of error E is 4.2467
c)The confidence interval is (54.2533, 62.7467)
d) we are 95% confident that the mean age of US millionaires is between (54.2533 , 62.7467)
EXPLANATION
From the given question;
a) The given Parameter or (statistics)
Parameter, population standard deviation σ = 13.0
__
Sample statistics n=36 x =58.5
b) The margin of Error E can be calculated using the formula below:
[tex]M.E=Z_{\frac{\propto}{2}}\times\frac{\sigma}{\sqrt[]{n}}[/tex]
Substitute the the values into the formula and simplify.
[tex]=1.96\times\frac{13}{\sqrt[]{36}}[/tex]
[tex]=1.96\times\frac{13}{6}[/tex]
[tex]=\frac{25.48}{6}[/tex]
[tex]=4.2467[/tex]
Hence, the margin of error E is 4.2467
c) The confidence interval can be calculated using the formula below:
[tex]C.I=\bar{x}\text{ }\pm Z_{\propto\text{ /2}}\times\frac{\sigma}{\sqrt[]{n}}[/tex]
[tex]This\text{ implies; C.I = mean age }\pm\text{ margine error}[/tex]
Substitute the values and simplify.
[tex]C\mathrm{}I=58.5\pm4.2467[/tex]
[tex]C.I=(54.2533,\text{ 62.7467)}[/tex]
Hence, the confidence interval is (54.2533, 62.7467)
d)Conclusion
Hence, we are 95% confident that the mean age of US millionaires is between (54.2533 , 62.7467)