The Solution.
The ratios are
[tex]\frac{6}{10}=\frac{12}{20}=\frac{4x+2}{4x+9}[/tex]To find the value of x, we shall solve the equation below:
[tex]\frac{6}{10}=\frac{4x+2}{4x+9}[/tex]Cross multiplying, we get
[tex]6(4x+9)=10(4x+2)[/tex]Clearing the brackets, we get
[tex]24x+54=40x+20[/tex]Collecting the like terms, we get
[tex]\begin{gathered} 54-20=40x-24x \\ 34=16x \end{gathered}[/tex]Dividing both sides by 16, we get
[tex]x=\frac{34}{16}=\frac{17}{8}\text{ or 2}\frac{1}{8}[/tex]So, the value of x is 17/8 or 2 1/8
To find AC and DF, we shall substitute 17/8 for x in the expression that defines AC and DF.
[tex]\begin{gathered} AC=4x+2=4(\frac{17}{8})+2 \\ \\ AC=\frac{17}{2}+2=8.5+2=10.5 \end{gathered}[/tex][tex]\begin{gathered} DF=4x+9=4(\frac{17}{8})+9 \\ \\ DF=\frac{17}{2}+9=8.5+9=17.5 \end{gathered}[/tex]Hence, the correct answers are;
x = 17/8
AC = 10.5
DF = 17.5