Respuesta :

Given the function:

[tex]y=\frac{3}{x^7}[/tex]

Let's use the rule of differentiation to find the derivative of the function.

To find the derivative using the rule of differentiation, we have:

Since 3 is constant with respect to x, we have:

[tex]3\frac{dy}{dx}(\frac{1}{x^7})[/tex]

Apply the basic rule of exponents:

[tex]3\frac{d}{dx}(x^{-7})[/tex]

Differentiate using Power rule:

[tex]\begin{gathered} 3(-7x^{-8}) \\ \\ =-21x^{-8} \end{gathered}[/tex]

Apply the negative exponent rule:

[tex]=-\frac{21}{x^8}[/tex]

Therefore, the derivative of the function is:

[tex]\frac{dy}{dx}=-\frac{21}{x^8}[/tex]

ANSWER:

[tex]\frac{dy}{dx}=-\frac{21}{x^{8}}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico