Respuesta :
the common difference d is 3
therefore, the first term is 17
Explanation
an arithmetic serie is given by the expression
[tex]\begin{gathered} a_n=a_1+(n-1)d \\ \text{where} \\ a_1\text{ is the first term} \\ \text{and d is the common difference} \end{gathered}[/tex]Also, the sum of the x terms of the serie is given by
[tex]S=n(\frac{a_1+a_n}{2})[/tex]then
Step 1
set the equations
The 7th term of an arithmetic series is 35.
[tex]\begin{gathered} a_7=a_1+(7-1)d \\ so \\ 35=a_1+6d\Rightarrow equation\text{ (1)} \end{gathered}[/tex]and, The sum to the 10th term of the series is 305,
let n= 10
[tex]\begin{gathered} S=n(\frac{a_1+a_n}{2}) \\ 305=10(\frac{a_1+a_{10}}{2}) \\ a_{10}=a_1+(10-1)d \\ a_{10}=a_1+9d \\ \text{replace} \\ 305=10(\frac{a_1+a_1+9d}{2}) \\ 305=10(\frac{2a_1+9d}{2}) \\ 305=5(2a_1+9d) \\ 305=10a_1+45d\Rightarrow equation(2) \end{gathered}[/tex]Step 2
solve the equations
[tex]\begin{gathered} 35=a_1+6d\Rightarrow equation\text{ (1)} \\ 305=10a_1+45d\Rightarrow equation(2) \end{gathered}[/tex]a) isolate the a1 value form equation(1) and replace in equation (2)
[tex]\begin{gathered} 35=a_1+6d\Rightarrow equation\text{ (1)} \\ subtract\text{ 6d in both sides} \\ 35-6d=a_1+6d-6d \\ a_1=35-6d \end{gathered}[/tex]replace in eq(2)
[tex]\begin{gathered} 305=10a_1+45d\Rightarrow equation(2) \\ 305=10(35-6d)+45d \\ 305=350-60d+45d \\ 305=350-15d \\ \text{subtract 350 in both sides} \\ 305-350=350-350-15d \\ -45=-15d \\ \text{divide both sides by -15} \\ \frac{-45}{-15}=\frac{-15d}{-15} \\ 3=d \end{gathered}[/tex]therefore,
the common difference d is 3
b) now, replace the d value in equation(1) and solve for a1
[tex]\begin{gathered} 35=a_1+6d\Rightarrow equation\text{ (1)} \\ 35=a_1+6(3) \\ 35=a_1+18 \\ \text{subtract 18 in both sides} \\ 35-18=a_1+18-18 \\ 17=a_1 \end{gathered}[/tex]therefore, the first term is 17
I hope this helps you