In a right triangle, what do you call the ratio of the lengths of the adjacent side of an acute angle to the opposite side?

The ratio of the lengths of the adjacent side of an acute angle to the opposite side is cotangent (option C)
Explanation:
[tex]\begin{gathered} Ratio\text{ of length of adjacent side to the opposite side = }\frac{adjacent}{opposite} \\ We\text{ need to find the trigonometry with this formula from the option} \end{gathered}[/tex]In trigonometry SOHCAHTOA, the common ratio ratios are:
[tex]\begin{gathered} sin\text{ = }\frac{opposite}{hypotenuse} \\ cos\text{ = }\frac{adjacent}{hypotenuse} \\ tan\text{ = }\frac{opposite}{adjacent} \end{gathered}[/tex]From the above, the inverse of the tan ratio will give adjacent/opposite
[tex]\begin{gathered} \frac{1}{tan}\text{ = }\frac{1}{\frac{opposite}{adjacent}} \\ \frac{1}{tan}\text{ = }\frac{adjacent}{opposite} \\ \\ Recal\text{ in trigonometry, }\frac{1}{tan\text{ }}\text{ = cot } \end{gathered}[/tex][tex]\begin{gathered} As\text{ a result, cot = }\frac{adjacent}{opposite} \\ Cot\text{ means cotangent.} \end{gathered}[/tex]The ratio of the lengths of the adjacent side of an acute angle to the opposite side is cotangent (option C)