Respuesta :

Answer: [tex]13\sqrt{7}[/tex]

Step-by-step explanation:

In the simple radical form there are no square root is remain to find.

Since, the given expression,

[tex]5\sqrt{28} + \sqrt{63}[/tex]

[tex]5\sqrt{4\times 7} + \sqrt{9\times 7}[/tex]

[tex]5\sqrt{4} \times \sqrt{7} + \sqrt{9}\times \sqrt{7}[/tex]

[tex]5\times 2 \times \sqrt{7} + 3\times \sqrt{7}[/tex]

[tex]10 \sqrt{7} + 3\sqrt{7}[/tex]

[tex](10 + 3)\sqrt{7}[/tex]

[tex]13\sqrt{7}[/tex]

Since, we do not need to find further square root of 7.

Thus, the required radical form of [tex]5\sqrt{28} + \sqrt{63}[/tex] is [tex]13\sqrt{7}[/tex].

Answer:

[tex]13\sqrt{7}[/tex]

Step-by-step explanation:

[tex]5\sqrt{28} +\sqrt{63}[/tex]

To simplify the given expression we simplify each radical

[tex]5\sqrt{28} = 5\sqrt{4*7} = 5*2\sqrt{7} =10\sqrt{7}[/tex]

[tex]\sqrt{63} = \sqrt{9*7} =3\sqrt{7}[/tex]

[tex]5\sqrt{28} +\sqrt{63}[/tex]

[tex]10\sqrt{7}+3\sqrt{7}[/tex]

[tex]13\sqrt{7}[/tex]