We are given the following quadratic equation
[tex]x^2-4x-9=0[/tex]When we have a quadratic equation of the form:
[tex]x^2+bx+c=0[/tex]Then, to complete the square we add and subtract the following expression:
[tex](\frac{b}{2})^2[/tex]Replacing the value of "b"
[tex](\frac{4}{2})^2=2^2=4[/tex]Adding and subtracting the term:
[tex]x^2-4x+4-4-9[/tex]Associating terms:
[tex](x^2-4x+4)+(-4-9)=0[/tex]factoring the expression in the first parenthesis:
[tex](x-2)^2+(-4-9)=0[/tex]Solving the operation in the second parenthesis:
[tex](x-2)^2-13=0[/tex]Now we solve for "x", first by adding 13 to both sides:
[tex]\begin{gathered} (x-2)^2-13+13=13 \\ (x-2)^2=13 \end{gathered}[/tex]Now, we take square root on both sides:
[tex]x-2=\sqrt[]{13}[/tex]Now we add 2 to both sides:
[tex]x=2\pm\sqrt[]{13}[/tex]We have to possible values for "x", the first value is:
[tex]x=2+\sqrt[]{13}=5.6[/tex]The second value is:
[tex]x=2-\sqrt[]{13}=-1.6[/tex]