If two angles are complementary, their sum equals 90º
So if A and B are complementary we can say that:
[tex]A+B=90º[/tex]For
A=9x-3
B=10x-2
This equation is equal to
[tex](9x-3)+(10x-2)=90[/tex]From this on you can solve for x:
[tex]\begin{gathered} 9x-3+10x-2=90 \\ 9x+10x-3-2=90 \\ 19x-5=90 \\ 19x=90+5 \\ 19x=95 \\ \frac{19x}{19}=\frac{95}{19} \\ x=5 \end{gathered}[/tex]Now that the value of x is known, replace it in the expressions for A and B to determine the measure of the angles:
[tex]\begin{gathered} A=9x-3 \\ A=9\cdot5-3 \\ A=45-3 \\ A=42º \end{gathered}[/tex][tex]\begin{gathered} B=10x-2 \\ B=10\cdot5-2 \\ B=50-2 \\ B=48º \end{gathered}[/tex]∠A=42º and ∠B=48º