Part A.
The length of the non-compressed spring can be determined by setting
[tex]\theta=0.[/tex]
Now, evaluating the given function at θ=0, we get:
[tex]f(0)=2\cos (0)+\sqrt[]{3}.[/tex]
Recall that:
[tex]\cos 0=1.[/tex]
Therefore:
[tex]f(0)=2\cdot1+\sqrt[]{3}=2+\sqrt[]{3.}[/tex]
Now, to determine all the possible times at which the length will be equal to the non-compressed length, we set the following equation:
[tex]2\cos \theta+\sqrt[]{3}=2+\sqrt[]{3}.[/tex]
Solving the above equation for θ, we get:
[tex]\begin{gathered} 2\cos \theta=2, \\ \cos \theta=1. \end{gathered}[/tex]
The solutions to the above equation are:
[tex]\theta=2n\pi,\text{ where n is a natural number or zero.}[/tex]
Answer part A:
[tex]\theta=2n\pi,\text{ where n is a natural number or zero.}[/tex]
Part B: If we set θ to the double of itself, then, the solutions to the following equation
[tex]f(2\theta)=2+\sqrt[]{3},[/tex]
are:
[tex]2\theta=2n\pi,[/tex]
therefore:
[tex]\theta=n\pi,\text{ where n is a whole number.}[/tex]
If
[tex]\theta\in\lbrack0,2\pi),[/tex]
then
[tex]\theta=0\text{ or }\theta=\pi.[/tex]
Answer part B: The difference is that the period is half of the original period.
[tex]\theta=0\text{ or }\theta=\pi.[/tex]