Answer:
4[tex]a^{2x}[/tex] + 4[tex]a^{x}[/tex][tex]b^{x}[/tex] + [tex]b^{2x}[/tex]
Step-by-step explanation:
Using the rule of exponents
[tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]
Given
(2[tex]a^{x}[/tex] + [tex]b^{x}[/tex] ) = (2[tex]a^{x}[/tex] + [tex]b^{x}[/tex] )(2[tex]a^{x}[/tex] + [tex]b^{x}[/tex] )
Each term in the second factor is multiplied by each term in the first factor, that is
2[tex]a^{x}[/tex] (2[tex]a^{x}[/tex] + [tex]b^{x}[/tex] ) + [tex]b^{x}[/tex] (2[tex]a^{x}[/tex] + [tex]b^{x}[/tex] ) ← distribute both parenthesis
= 4[tex]a^{2x}[/tex] +2 [tex]a^{x}[/tex][tex]b^{x}[/tex] + 2[tex]a^{x}[/tex][tex]b^{x}[/tex] + [tex]b^{2x}[/tex] ← collect like terms
= 4[tex]a^{2x}[/tex] + 4[tex]a^{x}[/tex][tex]b^{x}[/tex] + [tex]b^{2x}[/tex]