Answer:
[tex]2\leq x\leq22[/tex]
Explanation:
Here, we want to get the range of values for the width of the rectangle
We start by representing the width by a variable x
Mathematically, we have the perimeter of the rectangle as:
[tex]2(l\text{ + w)}[/tex]where l is the length and w is the width of the rectangle
The perimeter in terms of the actual values is thus:
[tex]2(22\text{ + x) }[/tex]This value is at least 48 ft:
[tex]2(22+x)\text{ }\ge\text{ 48 or 48 }\leq\text{ 2(22+x)}[/tex]The perimeter is no longer than 88 ft
We have that as:
[tex]2(22+x)\text{ }\leq\text{ 88}[/tex]We have the compound inequality as:
[tex]48\text{ }\leq\text{ 2(22+x) }\leq\text{ 88}[/tex]We then proceed to solve the compound inequality as follows:
[tex]\begin{gathered} 48\text{ }\leq44\text{ + 2x} \\ 48-44\leq\text{ 2x} \\ 4\leq2x \\ 2\leq x \end{gathered}[/tex]Secondly:
[tex]\begin{gathered} 2(22+x)\leq\text{ 88} \\ 44\text{ + 2x}\leq88 \\ 2x\leq88-44 \\ 2x\leq44 \\ x\leq22 \end{gathered}[/tex]Thus, we have the solution as:
[tex]2\leq x\leq22[/tex]