Solution
For this case we can create the following plot:
We can use the following formula to find the time to reach the ground:
[tex]y=y_o+v_{oy}t-\frac{1}{2}gt^2[/tex]And we can assume that yo =0 and g= 9.8m/s^2 then we have this:
[tex]0=22+55\cdot\sin 60\cdot t-\frac{1}{2}\cdot\frac{9.8m}{s^2}t^2[/tex]And solving we have this quadratic expression:
[tex]-4.9t^2+47.632t+22=0[/tex]And then solving for t using the quadratic formula we got:
[tex]t=\frac{-47.632\pm\sqrt[]{(47.632)^2-4\cdot(-4.9)\cdot(22)}}{2\cdot(-4.9)}[/tex]Solving we got:
t= 10.162 s
And then we can find the horixontal distance with this formula:
[tex]R=v_x\cdot t=55\cdot\cos 60\cdot10.162s=279.455m[/tex]