Respuesta :

we have the equation

[tex]ln(x)+ln(x+8)=4[/tex]

Applying property of log

[tex]lnx*(x+8)=4[/tex][tex]\begin{gathered} e^4=x(x+8) \\ e^4=x^2+8x \\ x^2+8x-e^4=0 \end{gathered}[/tex]

Find out the exact solution

Solve the quadratic equation using the formula

a=1

b=8

c=-e^4

substitute

[tex]x=\frac{-8\pm\sqrt{8^2-4(1)(-e^4)}}{2(1)}[/tex][tex]x=\frac{-8\pm\sqrt{64+4e^4}}{2}[/tex]

Simplify

[tex]x=\frac{-8\pm2\sqrt{16+e^4}}{2}[/tex]

therefore the exact solutions are

[tex]\begin{gathered} x=-4+\sqrt{16+e^4} \\ x=-4-\sqrt{16+e^4} \end{gathered}[/tex]

The decimal approximation of the solutions are

[tex]\begin{gathered} x=4.402 \\ x=-12.402 \end{gathered}[/tex]

ACCESS MORE
EDU ACCESS