Respuesta :

Y (b).

The function is given as,

[tex]g(x)=\frac{x-102}{5}[/tex]

It is asked to determine the output corresponding to the following inputs,

[tex]g(902)\text{ and }g\mleft(202\mright)[/tex]

Substitute 902 for 'x' to obtain the corresponding output as,

[tex]\begin{gathered} g(902)=\frac{902-102}{5} \\ g(902)=\frac{800}{5} \\ g(902)=160 \end{gathered}[/tex]

Thus, the first output will be 160.

Now, substitute 202 for 'x' to obtain the corresponding output,

[tex]\begin{gathered} g(202)=\frac{202-102}{5} \\ g(202)=\frac{100}{5} \\ g(202)=20 \end{gathered}[/tex]

Thus, the second output will be 20.

ACCESS MORE
EDU ACCESS
Universidad de Mexico