Let the smaller number be x
Then,
[tex]\begin{gathered} 2x+3=y \\ \text{and} \\ xy=65 \end{gathered}[/tex]Substitute 2x+3 for y in xy=65.
[tex]\begin{gathered} x(2x+3)=65 \\ 2x^2+3x=65 \end{gathered}[/tex]So this forms a qudratic equation,
[tex]\begin{gathered} x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \\ \text{ =}\frac{\text{-3}\pm\sqrt{9-4\times2\times(-65)}}{2\times2} \\ \text{ =-3}\pm\frac{\sqrt{529}}{4} \\ \text{ =}\frac{\text{-3}\pm23}{4} \\ =5 \end{gathered}[/tex]So the smallest number is 5. And
[tex]y=2\times5+3=13[/tex]The answer is (13,5)