The given function is,
[tex]j(x)=\frac{-6x^3+2x}{5x^2-3}\text{ ---(1)}[/tex]To find j(0), substitute x=0 in expression (1).
[tex]\begin{gathered} j(0)=\frac{-6\cdot0^3+2\cdot0}{5\cdot0^2-3}\text{ } \\ j(0)=0 \end{gathered}[/tex]So, j(0)=0.
To find j(2), substitute x=2 in expression (1).
[tex]\begin{gathered} j(2)=\frac{-6\cdot2^3+2\cdot2}{5\cdot2^2-3}\text{ } \\ j(2)=\frac{-6\cdot8+4}{5\cdot4-3} \\ j(2)=\frac{-48+4}{20-3} \\ j(2)=\frac{-44}{17} \\ j(2)=-2\frac{10}{17} \end{gathered}[/tex]Therefore, j(2)=-2 10/17.
To find j(-2), substitute x=-2 in expression (1).
[tex]\begin{gathered} j(-2)=\frac{-6\cdot(-2)^3+2\cdot(-2)}{5\cdot(-2)^2-3}\text{ ---(1)} \\ j(-2)=\frac{-6\cdot(-8)-4}{5\cdot4-3} \\ j(-2)=\frac{48-4}{20-3} \\ j(-2)=\frac{44}{17} \\ j(-2)=2\frac{10}{17} \end{gathered}[/tex]Therefore, j(-2)=2 10/17.
So, the obtained values are,
[tex]\begin{gathered} j(0)=0 \\ j(2)=-2\frac{10}{17} \\ j(-2)=2\frac{10}{17} \end{gathered}[/tex]Comparing the values of j(0), j(2) and j(-2), we get
j(2)
Therefore, the statement j(-2)> j(0) is correct.