We have
vi=initial velocity=10.2 m/s
θ=25°
a)
We have that for
[tex]\begin{gathered} v_{ix}=10.2\cos (25) \\ v_{iy}=10.2\sin (25) \end{gathered}[/tex]Then for
[tex]v_x=v_{ix}+at[/tex][tex]\begin{gathered} v_x=10.2\cos (25)+(0)(0.25) \\ v_x=10.2\cos (25) \end{gathered}[/tex]For vy
[tex]\begin{gathered} vy=v_{iy}+(-9.8)(t) \\ v_y=10.2\sin (25)+(-9.8)(0.25)=1.86\text{ m/s} \end{gathered}[/tex]For the magnitude of the velocity
[tex]v=\sqrt[]{(10.2\cos 25)^2+1.86^6}=9.43\text{ m/s}[/tex]For the direction of the velocity
[tex]\theta=\tan ^{-1}(0.2)=11.40\text{ \degree}[/tex]For part b)
[tex]vx=10.2\cos (25)\text{ m/s}[/tex][tex]vy=10.2\sin (25)+(-9.8)(0.5)=-0.589\text{ m/s}[/tex]For the magnitudeof the velocity
[tex]v=\sqrt[]{(10.2\cos (25))^2+(-0.589)^2}=9.26\text{ m/s}[/tex]For the direction of the velocity
[tex]\theta=\tan ^{-1}(\frac{-0.589}{10.2\cos (25)})=-3.65\text{ \degree}[/tex]For c)
Because of the negative sign that we obtain in the velocity, we can say that the greatest height is located before the 0.5 m