Factor theorem
States that if f(a) = 0 for a polynomial, then (x-a) is a factor for the polynomial f(x).
• Polynomial given
[tex]f(x)=2x^3-9x^2+13x-6[/tex]
and we are said that the factor is (x-1). Thus, we have to evaluate f(1):
[tex]f(1)=2(1)^3-9(1)^2+13(1)-6[/tex][tex]f(1)=2-9+13-6[/tex][tex]f(1)=0[/tex]
Therefore, x = 1 is a zero.
To find the other zeros, we have to set the equation to 0 and factor it:
[tex]0=2x^3-9x^2+13x-6[/tex]
Factoring we get:
[tex](x-2)\cdot(x-1)\cdot(2x-3)=0[/tex]
As we already know that (x -1) is a factor, we have to try with the others:
• (x-2)
[tex]f(2)=2(2)^3-9(2)^2+13(2)-6[/tex][tex]f(2)=16-36+26-6[/tex][tex]f(2)=0[/tex]
Therefore, x = 2 is a zero.
• (2x-3)
[tex]x=\frac{3}{2}[/tex][tex]f(\frac{3}{2})=2(\frac{3}{2})^3-9(\frac{3}{2})^2+13(\frac{3}{2})-6[/tex][tex]f(\frac{3}{2})=\frac{27}{4}-\frac{81}{4}^{}+\frac{39}{2}-6[/tex][tex]f(\frac{3}{2})=\frac{27}{4})^{}-\frac{81}{4}^{}+\frac{39}{2}-6[/tex][tex]f(\frac{3}{2})=0[/tex]
Answer: 1, 2 and 3/2.