Use the factor theorem to find all real zeros for the given polynomial and one of it's factors.Polynomial: f(x)=2x^3-9x^2+13x-6 Factor: x-1List the zero's from smallest to largest. If a zero is not an integer write it as a fraction.The zeros are Answer and Answer

Use the factor theorem to find all real zeros for the given polynomial and one of its factorsPolynomial fx2x39x213x6 Factor x1List the zeros from smallest to la class=

Respuesta :

Factor theorem

States that if f(a) = 0 for a polynomial, then (x-a) is a factor for the polynomial f(x).

• Polynomial given

[tex]f(x)=2x^3-9x^2+13x-6[/tex]

and we are said that the factor is (x-1). Thus, we have to evaluate f(1):

[tex]f(1)=2(1)^3-9(1)^2+13(1)-6[/tex][tex]f(1)=2-9+13-6[/tex][tex]f(1)=0[/tex]

Therefore, x = 1 is a zero.

To find the other zeros, we have to set the equation to 0 and factor it:

[tex]0=2x^3-9x^2+13x-6[/tex]

Factoring we get:

[tex](x-2)\cdot(x-1)\cdot(2x-3)=0[/tex]

As we already know that (x -1) is a factor, we have to try with the others:

• (x-2)

[tex]f(2)=2(2)^3-9(2)^2+13(2)-6[/tex][tex]f(2)=16-36+26-6[/tex][tex]f(2)=0[/tex]

Therefore, x = 2 is a zero.

• (2x-3)

[tex]x=\frac{3}{2}[/tex][tex]f(\frac{3}{2})=2(\frac{3}{2})^3-9(\frac{3}{2})^2+13(\frac{3}{2})-6[/tex][tex]f(\frac{3}{2})=\frac{27}{4}-\frac{81}{4}^{}+\frac{39}{2}-6[/tex][tex]f(\frac{3}{2})=\frac{27}{4})^{}-\frac{81}{4}^{}+\frac{39}{2}-6[/tex][tex]f(\frac{3}{2})=0[/tex]

Answer: 1, 2 and 3/2.

RELAXING NOICE
Relax