The general equation of parabola wit vertex (h,k) is,
[tex]y=(x-h)^2+k[/tex]
Simplify the equation of parabola in standard form.
[tex]\begin{gathered} y=(x+1)^2-5 \\ =\lbrack x-(-1)\rbrack^2-5 \end{gathered}[/tex]
Compare the parabola equation with general equation to obtain the vertex of parabola. So, vertex of given parabola is (-1,-5).
Consider two values of x to the right of -1 and two value to the left of -1.
For x = -2,
[tex]\begin{gathered} y=(-2+1)^2-5 \\ =1-5 \\ =4 \end{gathered}[/tex]
For x = -4,
[tex]\begin{gathered} y=(-4+1)^2-5 \\ =9-5 \\ =4 \end{gathered}[/tex]
For x = 0,
[tex]\begin{gathered} y=(0+1)^2-5 \\ =1-5 \\ =-4 \end{gathered}[/tex]
For x = 2;
[tex]\begin{gathered} y=(2+1)^2-5 \\ =9-5 \\ =4 \end{gathered}[/tex]
Plot the parabola on the graph and mention the points on the parabola.