Respuesta :

Answer:

The equation relating x and y is;

[tex]x^2+y^2=1[/tex]

Explanation:

Given the circle of radius 1 unit centered at the origin.

Recall that the equation of circle can be written as;

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Where;

[tex]\begin{gathered} (h,k)=the\text{ center of the circle} \\ (h,k)=(0,0)\text{ Origin} \\ r\text{ = radius =1 unit} \end{gathered}[/tex]

substituting we have;

[tex]\begin{gathered} (x-h)^2+(y-k)^2=r^2 \\ (x-0)^2+(y-0)^2=1^2 \\ x^2+y^2=1 \end{gathered}[/tex]

Graphing the circle, we have;

Applying Pythagorean Theorem;

Applying Pythagorean theorem to solve for x and y;

[tex]\begin{gathered} a^2+b^2=c^2 \\ \text{substituting;} \\ x^2+y^2=1^2 \\ x^2+y^2=1 \end{gathered}[/tex]

The equation relating x and y is;

[tex]x^2+y^2=1[/tex]

Ver imagen KeannaM627841
Ver imagen KeannaM627841
RELAXING NOICE
Relax