i need help with steps on how to solve this

Answer:
The equation relating x and y is;
[tex]x^2+y^2=1[/tex]Explanation:
Given the circle of radius 1 unit centered at the origin.
Recall that the equation of circle can be written as;
[tex](x-h)^2+(y-k)^2=r^2[/tex]Where;
[tex]\begin{gathered} (h,k)=the\text{ center of the circle} \\ (h,k)=(0,0)\text{ Origin} \\ r\text{ = radius =1 unit} \end{gathered}[/tex]substituting we have;
[tex]\begin{gathered} (x-h)^2+(y-k)^2=r^2 \\ (x-0)^2+(y-0)^2=1^2 \\ x^2+y^2=1 \end{gathered}[/tex]Graphing the circle, we have;
Applying Pythagorean Theorem;
Applying Pythagorean theorem to solve for x and y;
[tex]\begin{gathered} a^2+b^2=c^2 \\ \text{substituting;} \\ x^2+y^2=1^2 \\ x^2+y^2=1 \end{gathered}[/tex]The equation relating x and y is;
[tex]x^2+y^2=1[/tex]