Given data:
* The value of the potential energy given is,
[tex]U=35\text{ J}[/tex]* The spring constant of the spring is,
[tex]k=82\text{ N/m}[/tex]Solution:
The potential energy in terms of the compressed distance of the spring is,
[tex]U=\frac{1}{2}kx^2[/tex]where x is the distance compressed,
Substituting the known values,
[tex]\begin{gathered} 35=\frac{1}{2}\times82\times x^2 \\ x^2=\frac{35\times2}{82} \\ x^2=0.854 \\ x=0.92\text{ m} \end{gathered}[/tex]Thus, the spring is compressed to 0.92 m.