Respuesta :

Given:

[tex]f(x)=\frac{8}{\sqrt[]{x}}[/tex]

The above can be re-written as;

[tex]f(x)=\frac{8}{x^{\frac{1}{2}}}=8x^{-\frac{1}{2}}[/tex][tex]f(x)=8x^{-\frac{1}{2}}[/tex]

Applying the rule of antiderivatives of basic function;

[tex]x^ndx=\frac{x^{n+1}}{n+1}[/tex]

Then we have;

[tex]F(x)=\frac{8x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}[/tex][tex]F(x)=\frac{8x^{\frac{1}{2}}}{\frac{1}{2}}[/tex][tex]=8x^{\frac{1}{2}}\times2[/tex][tex]=16x^{\frac{1}{2}}+C[/tex]

Hence;

[tex]F(x)=16x^{\frac{1}{2}}+C[/tex]

But from the question; F(1) = 9

Substitute x =1 into F(x) and equate to 9 to find C.

That is;

[tex]F(1)=16(1)^{\frac{1}{2}}+C=9[/tex]

⇒ 16 + C = 9

Subtract 16 from both-side of the equation.

C = 9 - 16

C = -7

Substitute the value of C back into the anti derivative F(x).

Therefore,

The antiderivative that satisfies F(x) of the function that satisfies F(1) = 9 is:

[tex]F(x)=16x^{\frac{1}{2}}-7[/tex]

ACCESS MORE
EDU ACCESS