Find the particular antiderivative F(x) of f(x)=8/sqreroot xthat satisfies F(1) = 9.

Given:
[tex]f(x)=\frac{8}{\sqrt[]{x}}[/tex]The above can be re-written as;
[tex]f(x)=\frac{8}{x^{\frac{1}{2}}}=8x^{-\frac{1}{2}}[/tex][tex]f(x)=8x^{-\frac{1}{2}}[/tex]Applying the rule of antiderivatives of basic function;
[tex]x^ndx=\frac{x^{n+1}}{n+1}[/tex]Then we have;
[tex]F(x)=\frac{8x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}[/tex][tex]F(x)=\frac{8x^{\frac{1}{2}}}{\frac{1}{2}}[/tex][tex]=8x^{\frac{1}{2}}\times2[/tex][tex]=16x^{\frac{1}{2}}+C[/tex]Hence;
[tex]F(x)=16x^{\frac{1}{2}}+C[/tex]But from the question; F(1) = 9
Substitute x =1 into F(x) and equate to 9 to find C.
That is;
[tex]F(1)=16(1)^{\frac{1}{2}}+C=9[/tex]⇒ 16 + C = 9
Subtract 16 from both-side of the equation.
C = 9 - 16
C = -7
Substitute the value of C back into the anti derivative F(x).
Therefore,
The antiderivative that satisfies F(x) of the function that satisfies F(1) = 9 is:
[tex]F(x)=16x^{\frac{1}{2}}-7[/tex]