The problem is given to be:
[tex]|2x+12|=18[/tex]Step 1: Apply the Absolute Rule stated below:
[tex]\begin{gathered} If \\ |u|=a \\ \text{then} \\ u\: =\: a\: \quad \mathrm{or}\quad \: u\: =\: -a \end{gathered}[/tex]Therefore, we have:
[tex]\begin{gathered} 2x+12=18 \\ or \\ 2x+12=-18 \end{gathered}[/tex]Step 2: Solve the first case:
[tex]\begin{gathered} 2x+12=18 \\ Subracti\text{ng 12 from both sides:} \\ 2x=18-12 \\ 2x=6 \\ \text{Dividing both sides by 2:} \\ x=\frac{6}{2} \\ x=3 \end{gathered}[/tex]Step 3: Solve the second case:
[tex]\begin{gathered} 2x+12=-18 \\ \text{Subracting 12 from both sides:} \\ 2x=-18-12 \\ 2x=-30 \\ Divid\text{ing both sides by 2:} \\ x=\frac{-30}{2} \\ x=-15 \end{gathered}[/tex]ANSWER:
The values of x are:
[tex]x=3,x=-15[/tex]