Calculus early transcendental functions. Find the derivative of the function.

We are given the following function:
[tex]y=\frac{10}{\sqrt[3]{x}}-2x+3[/tex]We are asked to determine the derivative.
[tex]\frac{dy}{dx}=\frac{d}{dx}(\frac{10}{\sqrt[3]{x}})-\frac{d}{dx}(2x)+\frac{d}{dx}(3)[/tex]For the first derivative, we will use the following rule of exponents:
[tex]\frac{a}{\sqrt[x]{b}}=a(b)^{-\frac{1}{x}}[/tex]Applying the rule:
[tex]\frac{dy}{dx}=\frac{d}{dx}(10(x)^{-\frac{1}{3}})-\frac{d}{dx}(2x)+\frac{d}{dx}(3)[/tex]Now we will apply the following rule of derivatives:
[tex]\frac{d}{dx}(x^n)=nx^{n-1}[/tex]Applying the rule:
[tex]\frac{dy}{dx}=10(-\frac{1}{3})(x)^{-\frac{4}{3}}-\frac{d}{dx}(2x)+\frac{d}{dx}(3)[/tex]For the second derivative we will use the following rule:
[tex]\frac{d}{dx}(ax)=a[/tex]Applying the rule:
[tex]\frac{dy}{dx}=10(-\frac{1}{3})(x)^{-\frac{4}{3}}-2+\frac{d}{dx}(3)[/tex]For the third derivative we will use the fact that the derivative of a constant is zero, therefore:
[tex]\frac{dy}{dx}=10(-\frac{1}{3})(x)^{-\frac{4}{3}}-2[/tex]Now we solve the product:
[tex]\frac{dy}{dx}=(-\frac{10}{3})(x)^{-\frac{4}{3}}-2[/tex]