Respuesta :

We are given the following function:

[tex]y=\frac{10}{\sqrt[3]{x}}-2x+3[/tex]

We are asked to determine the derivative.

[tex]\frac{dy}{dx}=\frac{d}{dx}(\frac{10}{\sqrt[3]{x}})-\frac{d}{dx}(2x)+\frac{d}{dx}(3)[/tex]

For the first derivative, we will use the following rule of exponents:

[tex]\frac{a}{\sqrt[x]{b}}=a(b)^{-\frac{1}{x}}[/tex]

Applying the rule:

[tex]\frac{dy}{dx}=\frac{d}{dx}(10(x)^{-\frac{1}{3}})-\frac{d}{dx}(2x)+\frac{d}{dx}(3)[/tex]

Now we will apply the following rule of derivatives:

[tex]\frac{d}{dx}(x^n)=nx^{n-1}[/tex]

Applying the rule:

[tex]\frac{dy}{dx}=10(-\frac{1}{3})(x)^{-\frac{4}{3}}-\frac{d}{dx}(2x)+\frac{d}{dx}(3)[/tex]

For the second derivative we will use the following rule:

[tex]\frac{d}{dx}(ax)=a[/tex]

Applying the rule:

[tex]\frac{dy}{dx}=10(-\frac{1}{3})(x)^{-\frac{4}{3}}-2+\frac{d}{dx}(3)[/tex]

For the third derivative we will use the fact that the derivative of a constant is zero, therefore:

[tex]\frac{dy}{dx}=10(-\frac{1}{3})(x)^{-\frac{4}{3}}-2[/tex]

Now we solve the product:

[tex]\frac{dy}{dx}=(-\frac{10}{3})(x)^{-\frac{4}{3}}-2[/tex]

RELAXING NOICE
Relax